

Data Wrangling

Di Cook Professor of Business Analytics

Motivation

What can you do if you have some basic data wrangling skills?

A few examples.....

US Airline traffic

- ~15,000 flights a day
- April 1986 present
- RITA Research and Innovative Technology Administration (flight information, arrival delay, airline, plane id, ...)

On time performance database - <u>http://</u> <u>www.transtats.bts.gov/</u>

You can download this yourself!

Arrival delay (min)

How we can use this

- Fly early in the day, early in the week or weekends (Saturday)
- Avoid ORD, JFK, LGA, EWR

What about carriers? General events?

Year

American Airlines

American Airlines

- American airlines filed for bankruptcy Nov 29, 2013
- Mining publicly available data could have sounded the alarms several years in advance

Import **Visualise** Surprises but doesn't scale easily **Tidy Transform, clean** Consistent Create new variables, way of storing summaries, impute missings, remove odds records data Model

Scales but doesn't surprise

Diagram from Hadley Wickham

Raw data

First 5 records

	FL_DATE	CARRIER	TAIL_NUM	FL_NUM	ORIGIN	ORIGIN_ST	DEST	DEST_ST	
1	2015-08-07	UA	N14219	1650	LAS	NV	ORD	IL	
2	2015-08-07	UA	N69830	1650	ORD	IL	SEA	WA	
3	2015-08-07	UA	N76529	1652	BWI	MD	ORD	IL	
4	2015-08-07	UA	N76529	1652	DEN	CO	BWI	MD	
5	2015-08-07	UA	N37465	1652	EWR	NJ	DEN	CO	

(CRS_DEP_TIME	DEP_TIME	DEP_DELAY	CRS_ARR_TIME	ARR_TIME	ARR_DELAY	CRS_EL_TIME	ACT_EL_TIME	AIR_TIME	DIST
	1400	1355	-5.00	1940	0239		220.00			1514.00
	2245	2240	-5.00	0110	0055	-15.00	265.00	255.00	235.00	1721.00
	1723	1737	14.00	1830	1835	5.00	127.00	118.00	91.00	622.00
	1110	1109	-1.00	1638	1620	-18.00	208.00	191.00	172.00	1491.00
	806	804	-2.00	1022	1004	-18.00	256.00	240.00	214.00	1605.00

http://bit.ly/wrangling1

Your Turn What are the (1) rows, (2) columns of the data?

Answers:

(1) Rows contain the information about one flight that has occurred in the USA

(2) Columns have information about that flight such as the carrier, origin, destination, date, scheduled departure time, actual departure time, flight time, distance

Types of variables

- Quantitative: Numerical values that can be ordered
 - ✓ Continuous: can take any real-value
 - ✓ Discrete: separated set of values, eg integers
- Categorical: Information that can be divided into groups
 - ✓ Ordinal: categories can be ordered
 - ✓Nominal: no natural order to categories
- Temporal: Time variable, date, year, month, week, ...
- Spatial: Geographic location, latitude, longitude

Types of variables

- Variable type determines what cleaning can be done, want analysis is appropriate, how to plot it...
- Understanding what type of information is available is important

http://bit.ly/wrangling2

Your Turn What are the types of variables in the airline data?

Answers:

(1) Quantitative, continuous; Quantitative, discrete; Categorical, nominal; Temporal(2) None of them!

RIDDLES

When is age not a quantitative variable? When is educational level not a categorical variable?

Exploring delays

Question: Do delays change in the course of the day? Over the years? By carrier? By airport?

- What needs to be done to the data?
- Delay is a quantitative variable given in minutes
- Data is on database, if you pull everything back you will have 18Gb of information to proces
- Make the database work minimally aggregate delays into bins produce a histogram

- Arrival delays range from -24 hours to 30 hours
- Departure delays range from -18 hours to 30 hours
- Peak is at 0, no delay
- Secondary peaks at 24 hours

Reasons?

- Delay calculated incorrectly for some flights
- Mistakes in arrival or departure times, leading to mistakes in the delay values
- Failure to convert local time to global time

•

What do you do?

Detection and correction

Your Turn Brainstorm with your neighbor(s) and come up with three questions that you'd like to ask about airline traffic

Your Turn

Pick one of the questions, brainstorm with your neighbor(s) what steps you would need to take in order to answer the question

Here's one

Track the movements of plane XXX (N478HA)

We need more information: lat/long of airports (also found at BTS web site)

FL_DATE CARRIER FL_NUM ORIGIN DEST DEP_TIME ARR_TIME DISTANCE	AIRPORT LATITUDE LONGITUDE
1 2015-08-01 HA 156 HNL OGG 🔨 704 746 100	1 AHS 15.47278 -84.353056
2 2015-08-01 HA 155 OGG HNL 874 850 100	2 AHT 51.37861 179.258611
3 2015-08-01 HA 174 HNL OGG 924 1010 100	3 AHU 35.17722 -3.839444
4 2015-08-01 HA 211 OGG LIH 1037 1122 201	4 AIA 42.05333 -102.803611
5 2015-08-01 HA 144 LIH HNL 1155 1229 102	5 AIB 56.19000 -132.445833
6 2015-08-02 HA 123 HNL LIH 721 759 102	6 AID 40.10861 -85.613056
	7 AIK 33.64944 -81.685000
Flights	8 AIN 70.63806 -159.994722
T IIGHTS	9 AIT -18.83750 -159.761111
	10 OGG 20.89861 -156.4306
	Airports

Linking information from different sources

Expanding

Look at gaps in the records - flight with NO passengers - GHOST flights

AirTran Mar 2003 46 flights, 31510 Miles (685 mi avg.) ATL, MCO, PHL

bankrupt in 2005

Analysis by Heike Hofmann

Can you see a difference in these two days?

Analysis by Heike Hofmann

Mar 13, 6 AM EST Analysis by Heike Hofmann

Tidy data

- What is tidy data?
- Values in column names
- Multiple variables in one column
- Variable names in cells

Ideas, figures slides from Hadley Wickham, and tidyr publication

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	10 What	are the variable
			this dataset?

storms

stc	orm	win	d	pressure		date		
Alberto		110		1007		2000-08-12		
A	ex	45		10	09	1998-	07-30	
Alli	son	65		10	05	1995-	06-04	
Α	na	40		10	13	1997-	07-01	
Arl	ene	50		10	10	1999-	06-13	
An	hur	45		10	10	1996-	06-21	
disease counts

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

What are the variables in this dataset?

disease counts

pollution

city	particle size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

What are the variables in this dataset?

pollution

city		particle size	amount	
New	/ York	large	▲ 23	
New	/ York	small	14	
Lor	ndon	large	22	
Lor	ndon	small	16	
Be	ijing	large	121	
Be	ijing	small	56	

2.5	1.7	
	4.6	
		7.2

2.5	1.7	
	4.6	
		7.2

matrix

key-value

X	У	Z
W	а	2.5
Х	С	4.6
W	С	1.7
Ζ	d	7.2

	а	b	С	d
W	2.5		1.7	
Χ			4.6	
Y				
Ζ				7.2

Tidy data = lego

http://www.flickr.com/photos/wwworks/2473052504

Nessy data = playmobile

Tuberculosis

http://www.flickr.com/photos/diekatrin/4299075534/

- Collected by World Health Organization
- counts of TB cases by country, year, and demographic group

What are the variables in this data?

	iso2	year	m_04	m_514	m_014	m_1524	m_2534	m_3544	m_4554	m_5564	m_65	m_u
	(chr)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)
1	ZW	2003	NA	NA	133	874	3048	2228	981	367	205	NA
2	ZW	2004	NA	NA	187	833	2908	2298	1056	366	198	NA
3	ZW	2005	NA	NA	210	837	2264	1855	762	295	656	NA
4	ZW	2006	NA	NA	215	736	2391	1939	896	348	199	NA
5	ZW	2007	6	132	138	500	3693	0	716	292	153	NA
6	ZW	2008	NA	NA	127	614	0	3316	704	263	185	0
Va	riable	es not	shown	: f_04	(int)	, f_514	(int),	f_014	(int), f	E_1524 (int),	f_2534
	(int),	f_354	44 (int	t), f_4	4554 (:	int), f_	_5564 (2	int), f_	_65 (int	c), f_u	(int)	

Your turn

Variables in cells Melbourne weather records from GHCN What are the variables?

V13 V17 V21 V25 V29 V33 V37 V41 V45 V49 V2 V3 V5V53 V1 V4V9 1 ASN00086282 ТМАХ 2 ASN00086282 1970 TMTN 3 ASN00086282 1970 7 PRCP 4 ASN00086282 1970 128 150 122 109 8 TMAX 145 5 ASN00086282 1970 -7 ͲϺͳΝ 6 ASN00086282 1970 8 PRCP

1 ASN000862821970722 ASN00086282197072			uuce
2 ASN00086282 1970 7 2	1 8.0 14.1	6.1 0.3	1970-07-01
	2 6.3 12.4	6.1 3.0	1970-07-02
3 ASN00086282 1970 7 3	3 3.6 11.3	7.7 0.0	1970-07-03
4 ASN00086282 1970 7 4	4 5.7 12.3	6.6 0.0	1970-07-04
5 ASN00086282 1970 7 5	5 6.9 14.8	7.9 3.6	1970-07-05
6 ASN00086282 1970 7 6	6 4.7 14.9	10.2 0.3	1970-07-06

TIDY DATA can be summarised, plotted and analysed EFFICIENTLY

Tuberculosis

- Tuberculosis incidence is easily counted by country, by gender, by age, by year
- Investigate questions such as "Is the incidence increasing?", "Is it more likely to occur in children?", "Is the prevalence higher for girls in some countries?"

BUT WHAT INFORMATION IS MISSING???

Tuberculosis

We need populations for the different countries and years in order to compute rates, and then comparisons can be made

Ok, got it and computed rates, cases/population

HIGHEST

	country	vear	sex	age	cases	population	rate
	(chr)	(int)	(chr)	(chr)	(int)	(int)	(dbl)
1	TK	2008	m	4554	9	59	0.15254237
2	ТК	2008	m	2534	10	82	0.12195122
3	ТК	2008	f	1524	13	113	0.11504425
4	ТК	2008	f	65	4	35	0.11428571
5	TK	2008	m	5564	4	35	0.11428571
6	TK	2008	f	4554	6	56	0.10714286
7	TK	2008	f	5564	3	35	0.08571429
8	TK	2008	m	1524	10	122	0.08196721
9	TK	2008	f	2534	6	77	0.07792208
10	TK	2008	f	3544	5	75	0.06666667
• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •

What country is TK?

Temperatures

- With tidy data it is easy to examine temperature ranges, and precipitation over time.
- Investigate questions such as "Is temperature getting more extreme?", "Is precipitation declining?"

Is this what you expected?

Missing data

- Some values are not collected
- How is this coded?
- What are the effects?
- Imputing missings

Airline traffic

R_TIME	ARR_DELAY	CRS_EL_TIME	ACT_EL_TIME	AIR_TIME	DIST
0239		220.00			1514.00
0055	-15.00	265.00	255.00	235.00	1721.00
1835	5.00	127.00	118.00	91.00	622.00
1620	-18.00	208.00	191.00	172.00	1491.00
1004	-18.00	256.00	240.00	214.00	1605.00

What is missing?

Tuberculosis

	iso2	year	m_04	m_514	m_014	m_{1524}	m_2534	m_3544	m_4554	m_5564	m_65	m_u
	(chr)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)	(int)
1	$\mathbf{Z}\mathbf{W}$	2003	NA	NA	133	874	3048	2228	981	367	205	NA
2	$\mathbf{Z}\mathbf{W}$	2004	NA	NA	187	833	2908	2298	1056	366	198	NA
3	ZW	2005	NA	NA	210	837	2264	1855	762	295	656	NA
4	$\mathbf{Z}\mathbf{W}$	2006	NA	NA	215	736	2391	1939	896	348	199	NA
5	$\mathbf{Z}\mathbf{W}$	2007	6	132	138	500	3693	0	716	292	153	NA
6	ZW	2008	NA	NA	127	614	0	3316	704	263	185	0
Va	riable	es not	shown	f_ 04	(int)	f_514	(int),	f_014	(int), f	E_1524 ((int),	f_2534
(int), f_3544 (int), f_4554 (int), f_5564 (int), f_65 (int), f_u (int)												

What is missing?

Melbourne weather

What is missing?

	stn	year	month	day	tmin	tmax	t_range	prcp	date
16394	ASN00086282	2014	7	26	-999.9	-999.9	0	-999.9	2014-07-26
16395	ASN00086282	2014	7	27	-999.9	-999.9	0	-999.9	2014-07-27
16396	ASN00086282	2014	7	28	-999.9	-999.9	0	-999.9	2014-07-28
16397	ASN00086282	2014	7	29	-999.9	-999.9	0	-999.9	2014-07-29
16398	ASN00086282	2014	7	30	-999.9	-999.9	0	-999.9	2014-07-30
16399	ASN00086282	2014	7	31	-999.9	-999.9	0	-999.9	2014-07-31

http://bit.ly/wrangling3

Your turn What ways have you seen missing coded?

Challenger disaster

Subsequent investigation determined that the cause was failure of the O-ring seals used to isolate the fuel supply from burning gases.

NASA staff had analysed the data on the relation between ambient temperature and number of O-ring failures (out of 6), but they had excluded observations where no O-rings failed, believing that they were uninformative. Unfortunately, those observations had occurred when the launch temperature was relatively warm (65-80 degF).

This figure (scanned badly from Wainer, 1995) shows a graph accompanying the Report of the Presidential Commission on the Space Shuttle Challenger Accident, 1986 (vol 1, p. 145) in the aftermath of the disaster.

Missings are IMPORTANT

NASA Space Shuttle O-Ring Failures

Re-analysis of the O-ring data involved fitting a logistic regression model. This provides a predicted extrapolation (black curve) of the **probability of failure to the low (31 degF) temperature** at the time of the launch and confidence bands on that extrapolation (red curves).

- Software often drops missing values without informing you, producing quite probably misleading results and biased estimates
- Many modeling algorithms require complete data

Handling missings

Summarise

Proportion of missing in each column

Proportion of missing in each row

Overall proportion of missing values

✓ Stratified by categories in the data

Explore distribution of missing vs not missing - eg. do missings occur more often if humidity is high?

Impute & check

Numeric Summary for Missing Values

Missing: 3.01% of the numbers 37.5% of variables 23.23% of samples								
No_of_miss_by_case	No_of_Case	Percent						
0	565	76.8						
1	167	22.7						
2	2	0.3						
3	2	0.3						
4	0	0						
5	0	0						
6	0	0						
7	0	0						
8	0	0						

O Missing Values										
Summary Help Settings										
ID	Variables	Class	NApct							
1	уеаг	factor	0							
2	latitude	factor	0							
3	longitude	factor	0							
4	sea.surface.temp	numeric	0.004							
5	air.temp	numeric	0.11							
6	humidity	numeric	0.126							
7	uwind	numeric	0							
8	vwind	numeric	0							

Missingness map of a data set

What is do we learn?

Missing dependencies

Plot the variables and calculate summaries for missing or not missing on another variable

Missing values on HUMIDITY (plotted on yaxis), but not missing on air temperature (plotted on x-axis)

Imputation

Mean/median of complete cases, simple sometimes reasonable

Average the values of the nearest neighbors, using the complete variables

Use a model, like regression to predict the missings, based on the complete cases

Simulate from a probability model, like a normal distribution using the sample statistics of complete cases as parameters

Missings imputed using the **overall** median of complete cases

Missings imputed using the median of complete cases **by cluster**

Missings imputed using five nearest neighbours

Missings imputed using simulation from a multivariate normal model

Temperature data re-plotted after -999.9's handled

What else?

- Web scraping skills are really useful
- Reproducible reports can help in the long term
- Use the computer to understand what might have happened by chance - simulation, sampling, permutation are really useful

"With the wide availability of computer packages and graphics nowadays there is no excuse for ducking the labour of this preliminary phase, and it may save some red faces later." Crowder and Hand (1990)

2015 Best Data Tools

- 1. R, 46.9% share (38.5% in 2014)
- 2. RapidMiner, 31.5% (44.2% in 2014)
- 3. SQL, 30.9% (25.3% in 2014)
- 4. Python, 30.3% (19.5% in 2014)
- 5. Excel, 22.9% (25.8% in 2014)
- 6. KNIME, 20.0% (15.0% in 2014)
- 7. Hadoop, 18.4% (12.7% in 2014)
- 8. Tableau, 12.4% (9.1% in 2014)
- 9. SAS, 11.3 (10.9% in 2014)

http://www.kdnuggets.com/polls/2015/ analytics-data-mining-data-sciencesoftware-used.html

R packages for data wrangling

- devtools
- ggplot2
- readr
- tidyr
- dplyr
- rvest
- stringr
- Iubridate

knitr

- ∎ jsonlite
- RMySQL
- NML
- shiny

🛯 ggmap

http://www.computerworld.com/article/ 2921176/business-intelligence/great-rpackages-for-data-import-wranglingvisualization.html

Time to play in the sandbox is really helpful top ceveloping skills. Data competitions like available at kaggle encourage learning adout working with eate Di Cook, Data Wrangling for Managers, 2015

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.